
Restaurant Inspection Data for Ottawa, Part Two

In the previous tutorial, we downloaded three city of Ottawa’s
restaurant inspection datasets; business, violations and inspections.
The business ID column links to identical ID columns in the violations
and inspections tables. In linking two, three, or even more tables, we
are creating a relational database, which is discussed on pages 116 and
117 of Computer-Assisted Reporting.

While linking two tables provides useful information about inspections,
linking three of them is one step better. For instance, Tim Hortons
received 382 failing grades from the beginning of 2009 to May 15,
2015, the time period covered by the dataset at the time it was
downloaded for this tutorial.

There are other patterns to uncover. More questions to answer. Which
establishments are receiving the highest number of failing-grade
inspections? Is the number of inspections increasing or decreasing each
year in Ottawa? Which parts of town have the greatest number of
problematic restaurants?

NOTE: the tables in this tutorial are labelled “business_1”,
“violations_1” and “inspections_1”, respectively. So the screenshots
will differ slightly from your queries if you choose the original titles:
“business”,”violations” and “inspections”.

Let’s get started.

http://www.davidmckie.com/Restaurant%20Inspection%20Data%20for%20Ottawa.pdf
http://data.ottawa.ca/dataset/public-health-inspection-data

1. Before joining the three tables, they must be compatible,
which means all the datatypes must match. The “date”
columns in the business and violations tables are out of synch.

2. In order to correct the problem, we we’ll use the “ALTER
TABLE” query to modify the “date” column in the inspections
table to make it compatible with the date column in the
violations table.

3. Before we use the query, let’s describe the problem. In the
previous tutorial, we gave the date column in the inspections
table the VARCHAR(8) datatype, whereas the similar column in
the “violations” table has a “datetime” data type. If these two
columns preserve these datatypes, they will be impossible to
join. So we have to synch them up by altering or updating the
inspections date column.

4. You may ask why we just didn’t import the inspections date
column as a datetime type. Here’s why.

For whatever reason, when we open the inspections file in our
text editor, Notepad++ or TextWrangler, the date field contains
a seemingly infinite number of “NULL” values. This means
when importing this table, we used the VARCHAR(11), which
deliberately truncated all the NULL values after the date.
(NOTE: this is why it is always a good idea to open your data

sets in a text editor before importing them into MySQL. The
text editor allows you to see problem areas, which then
determine the kinds of data types you use when creating your
tables. For instance, in the tutorial involving the city of Ottawa
fire hydrant parking fine data, we added an extra column called
“Empty” to account for the extra commas at the end of each
row and before the carriage returns, which we can see in this
screen shot.

5. Now that we have a better understanding of the problem at

hand, let’s alter the inspections date column.
6. To do this, we can run this query: “ALTER TABLE inspections

MODIFY COLUMN date datetime;” This query has two
statements: ALTER TABLE, tells which table is in play; MODIFY
COLUMN points MySQL to the column in question and the
datatype to be used. You can also edit the table by changing
the datatype to “datetime”. (NOTE: MySQL produces an error
with the ALTER TABLE query. Just ignore it. Consversely, you
can also perform the same task by editing the table and
changing the datatype to “datetime” and saving the result.

7. Now we can join the tables. This tutorial will use the WHERE
statement to join the business table’s ID field to the similar
fields in the inspections and violations tables. For more

information on using the WHERE statement to join tables,
consult pages 196 to 1977 of the textbook.

8. This is what the script looks like:

Let’s break down the query. In the SELECT statement, you are
instructing MySQL to select the fields identified in each table. The name
of each table followed by a dot (“.”) comes before each field name. In
the FROM statement, you are telling MySQL where to get the data: in
this case, the three tables. We are using the WHERE statement join the
business table’s “business_ID” field, which is the primary key, to the
“business_ID” field in the violations table. Next, we use the “AND”
operator to tell MySQL that we also want to join the business table’s
“business_ID” to the similar column in the inspections table. And,
finally, we will use the AND operator to join the inspections “date” field
that we updated in the inspections table to the date field in the
violations table. (NOTE:When using three tables in a relational
database, we need to ensure that each table is linked in a meaningful
way. When dealing with two tables, that’s only one link. When dealing
with three tables, we need three links, (business to inspections,
business to violations, and violations to inspections) to ensure that each
row only references the row that it should.)

9. Run the query, which will take a few seconds. Your result
should look like this:

10. The result returns 32,666 rows.
11. Since working with the entire table, does us little good, we

want to query this table to find out which establishments are
being inspected the most, and for what kinds of infractions?
What areas of town contain the highest concentration of
violators? Are establishments being nabbed repeatedly for the
same violations? Answers to all these questions are only
possible when linking the tables and using WHERE and GROUP
BY statements to filter and summarize the key bits of data.

12. But before we do that, let’s create a VIEW from this table. As
we learned in the second query using the city of Ottawa’s fire
hydrant parking violation database, a VIEW is actually a query
that pulls records from each of the specified tables in the
SELECT statement.

13. So let’s create a VIEW from the relational database we’ve
created from the three restaurant inspection tables, and then
break down the query.

- As we saw in the second tutorial using the city of

Ottawa fire hydrant parking violation data, a VIEW.
As Ben Forta points out on page 214 of his excellent
book entitled “MySQL: CRASH COURSE”, “views are
exceptionally useful for simplifying the use of
calculated fields.” On page 208, under the
subheading “Why Use Views”, he points to some
common uses: To reuse SQL statements

- To simplify complex SQL operations. After the query
is written, it can easily be reused easily, without
having to know the details of the underlying query
itself

- To expose parts of a table instead of complete
tables

- To secure data. Users can be given access to specific
subsets of tables instead of entire tables.

- To change data formatting and representation.
Views can return data formatted and presented
differently from their underlying tables.

http://www.davidmckie.com/A%20continuation%20of%20the%20MySQL%20tutorial.pdf
http://www.amazon.ca/MySQL-Crash-Course-Ben-Forta/dp/0672327120

14. With the restaurant-inspection database, we’re using the
VIEW to make running queries easier. In this case, our view is
called Restaurant_Inspection_Master.

15. Run the query and refresh the menu on the left to find the
view under the “Views”, section of the SCHEMA for these
datasets.

If the view is not there, just refresh the menu.

16. Now we can create queries to find patterns worth pursuing.
For instance, let’s check out what’s happening with Tim

Hortons restaurants.

17. You’ll notice that in the “WHERE” statement, we used the

wild card (“%”), which is similar to the filter “contains” that we
learned in Excel. We use the wild card to get every variation on
the name, such as misspellings. (NOTE: Computer-Assisted
Reporting discusses wildcards on pages 191-192.) You could
also use the term ‘%Hortons%’, which would eliminate the
“Timothy’s World” highlighted above.

 Also notice that the wildcard -- the percentage sign operator --
is bookended by a quotation. That’s because text used in the
WHERE line must be surrounded by quotation marks. This is
not the case for numbers.

18. To get more practice, select some other names from your
business table.

19. Now let’s add the GROUP BY statement to our query to see
how many times Tim Hortons has been inspected each year.

20. In this query, we have used the “Year” function to pull the

year of the date column and given the column the name or
alias, “Year”. We’re using COUNT to count all the inspections
and have given that new column the alias, “Inspections”. In the
FROM line, we’re using the VIEW we’ve created. After WHERE,
we are specifying that we want all restaurants that contain the
word “Tim”. The advantage of using alias is that it gives
columns more appropriate names that are simpler to include
your query. In this case, instead of “GROUP BY YEAR(Date)”, we
can simply use the alias, “Year”. The same thing goes for the
ORDER BY statement, which tells MySQL to order the
inspection counts in descending order.

21. Now let’s perform one more query that will add even more
power to your analysis. As we can see in the first Tim Hortons

screen shot, restaurants from some locations commit more
violations than restaurants from other locations. So if we
wanted to determine the Tim Horton’s restaurant with the
greatest number of violations, we would need to combine the
“Name” column with the “Address” column. To do this, we
would use the “CONCATENATION” function discussed on pages
192-194 of our textbook. This is what the query looks like:

22. Okay, that’s better. We can see the restaurants grouped

according to their addresses. But why are there two lines for
the Tim Hortons at 1000 Airport Parkway Private in 2009? Well,
it could be because they were cited for two, separate code
infractions. To test this theory, we need to add the “Code”

column.

23. Now we have our explanation. The restaurant violated

separate codes. To find out a little bit more about the
inspections, you can go to the city’s website that provides a bit
more detail.

24. Now what if we wanted to determine how many times each
of the restaurants at the particular addresses were inspected
each year? To do this, we simply need to perform a simple

http://ottawa.ca/en/residents/public-health/food-premises-personal-service-settings-and-inspections/inspections

count.

25. There are many ways to slice and dice this data to come up

with possible story ideas. Because these tutorials build upon
one another, it’s important to use the previous guides as
references, as well as the textbook.

26. And don’t forget that after each query, you can export the
table as a “csv” file to continue working with it, especially if you
want display the data in a chart or map.

27. To download the queries that we’ve used for this tutorial,
please click here right click on the file and remove the “txt”
extension to leave you with the file that reads:
ScriptsForSecondRestaurantInspectionTutorial.sql

http://www.davidmckie.com/ScriptsForSecondRestaurantInspectionTutorial.sql

